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The viewpoint is taken that every probabilis-
tic automaton is situated within a sequence of
environments which affects the initial state
distribution and the transition function. There
exists a probabilistic automaton within a deter-

,~~~~~ ministic environment sequence (ADE) which defines
an event which is not a PCE , yet in certain non-
trivial cases the behav ior of an ADE can be
simulated by a probabilistic automaton. For
probabilistic automata within random environment
sequences there is a mean equivalent canonica l
representation wh ich el iminates the randomness
due to probabilistic transition.

~~~~ The traditional method to describe a system
• i3 to model the behavior as it stands . The
Q system may not, however, exhibit identical

behavior when placed within a distinct external
situation . That is , the input and quin tessential
dynamics of the system rema in the same , hut the

LU external factors have changed. These external
factors are the env ironmen t within  wh ich the
system operates. By the traditiona l approach a
system which performs differently within distinct
environments would have to be regarded as a

Cuuii i~~ colleetion of distinct systems . Consideration
of automata within environments allows the various 

~J Ufactors which may influence the behavior of the
system to be incorporated in the model . Thus, by

perform differently within distinct environments
could be iden tical with the difference in behavior
being attributed to the environments. Automata in 

MAY 8 1~~
th is more fundamenta l description systems which Ill?.

media were investigated also in [&] and [103, but
our concept is more general and includes this ISU U IS
earl ier work as a special case .

Many b iolog ical or social systems operate ~~~~ B
within environments which influence their behavior.
Even mechan ical or electrica l sys tems , intended
to be independent of external factors, may exhibit
such behavior. If the environment may be control-
led or the internal dynamics modified, then there
may be methods of optimizing the behavior of the I~~~ 8’!’Rim~j~.jØ~ ST&’I~~~~~ A I

Probabilistic automata (PA) are mathematical
System. 

I ~~~~~ ~~~ 

.~~~~~~ ~~~~~~~~~~~~~~~~ Imodels for finite state systems which admit at
_ _  aib~~~~ UnA~ft.d____________ S
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discrete intervals certain inputs and emit certain 1. Probabilistic Automata
outputs. If the system is in state s and if the

In this section we present some of the basicpresent input is a , then the system m~y go in to 
defin3 tions and results from the theory of prob-any state and the probability of going to state S

~ ab ilistic automata which will be used in the suc-depends on ly on s., s and a. The output of the cee-1ing sections.system depends on’y o~r the state obtained. There 
Let Z be the finite input set, the alphabet,is extensive literature on probabilistic automata, and let 1* be the class of all finite sequences ofIn this ~a~er we shall  foll ow the notations of elements of I. Let us also include A , the empty[7] and 5 . In particular , the formulation given 

tape , in t* . If x = o f.. ‘°K is a tape, then thetherein amounts to assuming that the set of out- 
length L(x) of x is L(x)=K. Note that L(A)=0. Ifputs contains just two elements. Because of the 
x and y are tapes, then xy will denote the taperestriction to two outputs , these automata can be 
which is the concatenation of x and y.vi ewed as def in ing (recogn izi ng) sets of sequences 

Let M denote the set of all n x n stochasticof inpu ts (tapes); th is point of view is adopted matrices “and V~ denote the set of all n-dimension-throughout this paper. al stochastic vectors.Probabilistic automata exhibit a behavior
independent of environmental variation . It seems Definition 1 A probabilistic automaton (PA) over
quite natural , however , to consider automata with the alphabet I is a system A (S,M,s0, F), where
stochastic behavior located within environments S {sj,..., Sn) is a finite set (the set of
which affect their properties. Thus, the prob- internal states), M is a func tion M : I -

~ 
Mn (the

abilistic transition function of the system is matrix transition functio~’) such that m13 (o) is
not only related to the present state and input , the probability of changing to state Sj under
but also to the present configuration of the input a given that the system is in state sj,
environment . Also, the initial state distribution ~~~ 

Vn (the initial state distribution), and Fc S
and final output relation may depend on their (the set of acceptance states).
repective environments. The function N can be extended to define theThis work surveys some lines of research in transition probabilities for going from state s~Gould and Wegman [3J and Gould [1], [2]. In to state s~ by a sequence x ( 1*. Let M(A )this paper we develop a formulation of environ- the r a identity. For x~a1. “°K we obtainments and of probabilistic automata within envi- M(x) by the rule M(x) = M(a1)M(a2) . . .M(o~)ronments and answer some of the basic questions Let A = (S,M ,s05 F) be a PA over alphabet E .about them . We define the state distribution of A after inputThe sequence of environments may be derived tape x as s(x) = s0M(x) . A tape XE E~ is said tofrom a deterministic rule; in such a case we have be accepted by A if a sLate in F is obtained afteran automaton in deterministic environments (ADE). tape x is input . Let a” be the n-dimensionalADE are , in genera l , stronger than probabilistic col umn vec tor whose i!!~ component is I if sj ( Fautomata. In an effort to find when an ADE and and 0 otherwise . The probability that tape xa PA have the same capability, we introduce the is accepted by A is def ined a~ p(x) and is calcu-concept of simulation of an ADE by a PA (Theorem lated p(x) = 5(x)nF = wo M(x ) a2). Reduction of the environment set to certain A PA may be used to define sets of tapes.finite structures is also considered . These sets will not only depend on A but also onFinally, we consider the case of probabilistic an additional parameter called the cut-point . Letautomata operating in random env ironmen ts (ARE) ; A be a PA and A be a real n umber , A ([0,1). Thewe assume that the realization of any environment set of all tapes defined by A with cut-point A isis governed by some probabilistic structure. T(A ,x) = x Ix E E~ , I < p(x)}. Also , we say lJc 1~Hence , the environment sequence is a stochastic is a probabilistic cut-point event (PCE) ifprocess. We encounter the dua l nature of the U T(A ,A) for some PA A and some A ([0,1). PCErand omness involved in ARE . We have that the is a synonym for stochastic language.environments are random and that for each value
the environment assumes, the probabilistic tran- 2. Automata in Deterministic Environments
sitions are defined . The relative frequency of We shall consider the aggregate of all config-acceptance of a tape under a fixed random environ- urations of the env ironment as an abstract setment sequence is a consistent estimator of the denoted by E. Presently, we do not make anyexpected acceptance probability. Finally, we stipulations as to the origin, form, structure,find that there is a mean equivalent canonical or cardinality of E. As each new symbol is inputrepresentation which eliminates the randomness to the system , the configuration of the environ-due to probabilistic state assignment and tran- ment attends to the system and the probabilisticsitions . Thus , for any automaton in random envir- transition ensues as a function pf the inputonmentS we can find a finite automaton in random 

symbol and the configuration of the environment.environments with finite environment set, deter- We also view the initial state distribution asminist ic assignment of the initial state, and 
a function of the environment.deterministic transitions which has a state dis- 

Here we shall consider the case in which thetribution equivalent in the mean for any input sequence of environments is specified by a deter-tape. 
ministic rule. That is, for the initial distri-
bution and the subseq uent transitions, we are
given the precise condition of the environment .
Let r denote the cartesian product of a countable
number of copies of the environment set g, The
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environment sequence is a mapping e(K) = eK EA ’ It is easily verified that for any x E 1’ and
for K 0,l,... We also denote e by the sequence e E A” the probability that x is accepted by A
(eo , e1 ,...). within environment sequence e is identical to the

Definition 2 An automaton in deterministic probability that x is accept~d by B within environ-
men t sequence e. So T(A ,e, A) = T(B ,e,A) for a l l

~j~Ti~ nments (ADE) is a system A (l ,S ,G ,w05 F ,E), e (A” ’ and all A E [0,l). But B is ai~ ADE as in
where I is the f in i te input alphabet, S={s1, .s~ } 

~ef ini t ion 2; that is , B has a constant set of
is the finite internal state set, G is a mapping acceptance states . Hence , we have the following
6: 1 * A’ -

~ M~ (the basic matrix t ransi t ion result.
function), so: A’ -= V (the ini t ia l  distri-
bution function), FC S ~~~~ set of acceptance Theorem 1 Every set of tapes which can be defined
states), and A’ is the set of environments, by an extended ADE with the set of acceptance

states related probabilistically to the terminal
The matrix transi tion function N is defi ned

on I’ x A”' by the inductive recursion rule: 
environment can be defined by an ADE with a con-
stant set of acceptance states .

1. M(A ,e) = 1 .
~~~~ ( A”

2. if x ( I’ such that L(x)=K and e ( r, Another possible extension is to allow the
then M(xa,& = M(x,e)G(o ,eK+l)TK components of 0F(e) to be arbitrary numbers in

Hence , for all x E A”, K 
— the interval [0,1]. However, for an e A’,

= II G(o1, e5), is contained in the convex hull of n~~,n 
2

i 1  So nF(e) can be represented as
where x = °1’’’0K and e = (e o,et,...). F

The state distribu~
’ion of A within environ- ~P(e) = I •3(e)n ~ wi th

ment sequence e after input tape x is computed as 1=1
with PA except the relevant quantities depend on

2”the environments. Thus, we obtain s~(~•) F is 
0 ~ •~Ce) ~ 1 and 

j~ 1 
•~(e) = 1.s0(e0)M(x,e). Similarly, p(x,e) =

the probability that A wi th in env ironment sequence It follows as a corollary to theorem 1 that thee accepts tape x, Clearly, these functions do not class of sets of tapes defined by these automata
~epend on environments beyond the input sy’mbols. is identical to the class of Sets of tapes definedAn ADE may also be used to defi ne sets of
tapes in a manner similar to that of PA except by ADE as in definition 2.

that the set defined will depend on the environ- 
Probabi listic automata can be considered as a

ment sequence . special case of ADE in two ways. First, for any
PA A (S , N , w~ , F) over I we can define an ADE

Defini t ion 3 Let A be an ADE and A be a real B with any nonempty environment set A’ such that
number , A E t O , l) .  The set of tapes T(A 1e,A) = s0(e) SQ and G(o ,e) = 14(o) Va E I , Ye ( A’. Such
( x i x  ( E* , A p(x ,c)}is called the set of tapes an ADE is not influenced by the configuration of
defined b y A  wi th in  environment sequence e with the environment . Hence , for any A ( [ 0 , 1),
cut-point A. T(A ,A) = T(B,e,A) Ye ( A”'. Also, for any PA A we

We now study the problem of whether it suffices can define anThDE wTth any nonempty environment
to ignore the extens ion of ADE with the set of set A’ such that for some e0, e E A’ w0(e0) = i~~ 

and
acceptance states related to the environment. G(a,e) — M(o)Vo E I. For the environment sequence

Logical ly, we restrict the relationship to the • (e0, e,e,...) we obtain T(A ,A) T(B ,e A) for
environment concurren t with the termina l input every A ( [0,1), Thus, every set of tap~s
symbol of any tape. Let us order the 2” subsets of definable by a PA can be trivially defined by an
S and let $3 (e) be the probab i lity that F). the 

ADE In either of two ways.
J !!.~ subset of S, is the set of acceptance states Let I — (a). Paz [6] demonstrated that there
when the env ironment concurrent wi th the term inal exists U C ~ which is not a PCE. Consider a
input symbol is e. Let T(A ,e,A) be any set of two state AbE A over alph abet I, where
tapes defined by an extendeci”ADE A’(Z ,S ,G,ir0,~ ,A’) ri_ a 

~~~

within environment sequence e with cut-point A and A’ • (0,1). w0(e) • (l-e,e), G(a ,e) “1l-e eJVe~~with the sot of acceptance srates related probabi- and n~ 
,1O1 The elements of E~ are of the formlistically to the terminal environment by •. 0K for sM~ K ~ 0. Let V be any subset of I’;Consider the AbE B w ith n2” states over the then V 10K 1, 0Ki ,~ ,,},

sane alphabet, with the same environment set, and Jl if K—K i for some i
wo(eo)~ 2,,(eo)) 

For !(K I_0 otherwise i t is clear
that V • T(A ,e,0).  Since V is arb itrary , every

(G(a,e),,(e) G(a,e)~ 2(e) 
. . .G(a,e),2~ (e,) subset of this particular 1* is definable by A

G8(c~,e) - IG(a,e)~1(e) G(o,e),2(e)...G(a,e),2n(e)I 
within some environmental sequence. But U c I’
is not definable by a PA. Thus, the class of

[G(o ,e)•1(e) G(o ,e)~ 2 (e)’”G(o,e),2~ (e ’IJ automata in deterministic environments produces a
strictly larger class of definable sets.

1,~i 1 8UU II~ IIS D

~ I F 3. Simulation
,
~ 

,~ 2 
~
, 4cr. w~ and G are def ined in A.  0

Let A be an ADE with finite environment set. ~f4We shall construct an effective procedure to findI F a PA which simulates the operation of A.
2”) 

_________BY _ _ _ _
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Definition 4 A PA A ’ over alphabet I’ simulates 
- I 0 0 1

the IdlE A = (E ,S,G,s0F~,E) i f there is a relation R G(g”(o ’)) ~ ~~ Ibetween 11* and 1’ x A’ such that M’ (a’) — I Ii for any (x ,e) E £~ ~ A”' there exists
x ’ ( I’” such that [a’, (x,e)] E R 1 0 . o I I

2. if [x ’,(x,e)] ( R, then for each AE [0,i),
( T(A ’ ,A) iff a ( T(A ,e ,A );  Let 1~~’ = (0,. ..,0,l ,0) and F’ = F. Therefore,r ,~F3. if for some A [0,1) x ’ ( T(A ’ ,A ) ,  then 

~~
, i . . .

there exists (x,!) E Z~ * A” such that I 0 I
Cx ’, (x,&] E R. 0 J

If a PA A’ simulates the ADE A , given any input Suppose [a’, (A,!)] ( R. Therefore, x’ •
tape x for A within environment sequence e, we g(OA ,e0) = g(0,eo) = e0. So
have a rule R to find an input tape x’ for A ’ such 

p ’(x ’) = S~ ’M’ (eo)n F (50(e0),0,0)nF’
that x’ has the same acceptance probability as x
for A w ithin some environment sequence e. We say iro (eo)nF p(A ,e).
a tape a’ ( E,~ is admissible if and only if there Thus, if Cx ’, (A,!)] ( R, then for each A E [0,1),is an input tape x for A within some environment ~ E T (A~ , A) i f f  ~ ( T(A ,e ,A) .
sequence e from which the rule R will yield X~~ Suppose [x ’,(x,e)] E ~~, where x ~ A. Hence ,By conditton 3 above we see that tapes which are L(x) > 0. By definition of R we have that x’not admi ssible do not belong to any set defined by g(Ox , (e0 eK)), where x = °1~~ ’°K 

has length
A’ : that is, if x ’ is not admissible , then K >  0. So x ’ = g(0 ,eo4(a1,e1)...g(a~, e~~—
p ’(x ’) = 0. eool...a ’K, where ~i S a~ S u (m+l)-l for i •For any tape x E Z~ with L(x) = K ~ 0 only the Thus, p ’(x ’) = s0 ’M’ (e 0o1 ’. . .aK~)fl

F’ 
F ’environments eo,el,...,eK influence the acceptance 

= s ’M’ (e )M ’(ø ’ a ) n  . But
probability. Hence, the relation R need only
depend on a and eo,el,...,eK . 1 : ~ 0 I

We shall use the notation 1(A) to denote the I
cardinality of the set A. M’(a1’. , 

~~~~~~~~ 

-
~~~

- I G(g ”1 (o’)) 0 0

Theorem 2 Let A (I ,S,G,s0,F ,E) be an ADE such i 1  1 Ô ...0 d I
l o . . . o  . 0  1)that # (E) < ~~ . There exists a PA A ’ over some

finite alphabet I’ wh ich simula tes A. : ? 9
Proof: Let m = 5(1) and u = 5 (E) . Without any I 14(x,e) : o o  I
T~~
T’of generality we shall let I = ti ,2,...m) = 0 0 1 I

and A’ (0,1,.. .,~i-l}. Consider E’— {O,l,..., 0 ..0 . 0 1
i(m÷1)-l) . Let £0 Zu{0). We now define a
mapp ing g: t~ A’ -‘- I’ as follows : h ence , we obtain p ’(x ’) = so(eo)M(x,e)a~ • p(x ,e) .

g(a ,e) = e + ou Ye ( A’ and Va ( E
~ . We So, in th is case , we have x’ ( T(A ’ ,~~ i f f

extend the definition of g to (E c x A’)*, the set x E [0,1).
of a l l  f inite sequences of elemen ts E~ x A’, by We have verified that Yx E 1 aj~d Ye E A’ if
component-wise application and concatenation of the [x ’.(x,e)] € R, then for each A E L0,1T
results. The extension of g is one-to-one cor- X’ E T[A’,A) jff X ( T(A ,e,A ) .
respondence between (E~ 

x Ai* and I’ . If b is any Let x ’ ( £‘~ be any tape for A ’  such that
nonempty element of (Z0xE)*, then b is isomorphic to there does not exist x ( 1* and e ( A” so that
(y, (e0 eK)), where for some K~0, y ( l~’ 

Cx ’, (a,.)] E R. The tape x’ i s o t admissible.
L(y) = K + 1, and e0 e E F. We def ine the Yet x’ = g(b) for some b ( (Z~ *

relation R to be the set jail elements of the form: A’ , the empty tape for A’ , is the image under
[g(Ox ,(eo,.. ,eK)), (a,.)] g of the empty tape in (E~ a A’)”~ , Clearly. A’ is

not adm issible and p ’(A ’)  sO ’ti 0. Hence ,
where x € 1’, L(x)  • K , e = (e0,...,e ...~~,, 

and A’ ~ T(A ’ ,A) for any A E [0,1).
K 0,1,...Clearly, for each Cx,!) E ~*xE there Let x’ ( £‘~ be any nonempty tape which is notexists a unique x ’ = g(Ox , (eQ... .,eK)), where admissible.  x ’ = ce ’ . ..ok ’ is the image under g

• K = L(x) , such that [x’,(x,e)J ( R. of some element b ( (E~ a A’)*, where b has the
Now we shall construct a PA A’ = (S’,M’ ,w0 ’,F’) form (y, (e0 eK)) and L(x’) L(y) K + 1.

over I’ to simulate A.  Let S’ = Sl’(sn+l , sn+2). Note that y E 10*. Let y — tQtl ...tK . x’ is not
For any a ’ such that 0 5 a ’ S u-i we define admissible iff r~ ~ 0 or ~ I for some i l ,...K.

.0 1 If t0 � 0, then u S  a~ ’ S u(m+l)-l. S0A’ enters
0 . : : I the absorbing state 

~n+2 
( F’ at the first transi-

M’(o ’) I I
. 0  1 tion. So x’ ~ T(A ’ ,A) for any A E [0,1). If

0 
‘o I for some i = l,.,.,K, then -

~~~ 
— 0. Hence,

0 ~ a~ ’ s u-I and A’ enters state 5n+2 at the1, 0 ‘ ‘ 0 . 0 1 3 (i4l)-th transition . Again, we have a ’ ( T(A ’,A)
where 

~o~~~
(o ’) is the i!!~ component of s

~
(o ’). for any A ( [0,1).

Note that 0 ~ a’ S u- i implies a’ E A’. For Thus, if for some A E [0,1), a’ ( T(A’,A) then
u s a ’ s u(m.l)-J , def ine a ’ is admissible; that is,there exists (x ,e) (

such that Cx ’, Cx ,.)] ( R.
Consequently, A ’, as constructed, simulates A . a

840
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The results of theorem 2 and the previous see- 2, for any a E I the mapping G(a,’) A’ -~ is
tion seem to offer a paradox. We have found a set a homomorphism;
of tapes LI c I’ defined by an ADO A with finite 3, s0ç’) is a constant.
environment set which is not a PCE. So for any Then there exists a PA A ’ which simulates A ,
x [0,1) there is no PA Ap such tha t U = T(A~ ,A ) .  proof: Let a ( 1* and e • (e0.e1,...) E A’.But by theorem 2 there exists a PA A’ over an
expanded alphabet I’ such tha t A ’ simu la tes A. ~~~~~ L(x) • K. Each” e~, i=l ,...K, has a finite

decomposition Cj f~, ‘..‘ A’irjLet U’ U (g(Ox ,e) a E T(A,e,A)). U’ = T(A ’ ,A }
~ 

r2
Thus , M(x ,e) fr G(a i , e5) = •fl~ iT G(a 1f~,)and, hence, is a PCE. We not only have expanded I

i—I rK d~~~
1
~~~

1
l~ t A’ be anyto I’ but also enriched the internal essence of the Let xt = 01

ri 
‘ ‘ °K an

system with a structure that had been included in environment sequence with initial terms
the environment . The problem for U C ~~* remains. f
I) I U’ and U’ has a different character within It* . Ir,’ f21.,fKr KS where A’ ( F is arbitrary. Then

If fact, U as a subset of E~* is a set of inadmis- p(x,!)” p(xt,f). Hence, for all A E [0,1),
sible tapes and is not defined by A ’ . In genera l, a ( T(A ,e,A) Tff xt € T(A ,f ,A). Clearly, for any
from theorem 2 we obtain T(A ’,A) • U (g(Ox ,e) I decomposition of the environments the corresponding

eEE” derived input tape will have identical acceptance
x E T(A ,e,A } .  Moreover, for any inidmissible tape properties.
t ’ for AT ( this  must includ e T(A ’ ,A ))  we can obtain The ADE At (1,S,G,w0,F,F) has finite environ-
a tape a and a class of environment sequences with-  ment set and so we have a relation Rt between 1~ *
in which the probability of acceptance of a by A and £ a P whereby a PA A ’  simulates At .  Define
exceeds A. the relation R between I~* and 1* a A”' as fol lows:

Given any arbitrary n-dimensiona l vector (~ we [x’,(x,!)]( R iff [x ’,(xt ,f)] ( Rt
define ~~ 

= max 
~~~~~~~ 

Also , for any n a n matrix for any decomposition o f!  and its corresponding
Q, we define IQ I = ~af I~t~t . derived input tape xt.

For any AbE A = (Z ,S,G,~~~~,F,E) consider the It is easily verified that R is the relation to
pseudo-metric d(e,e’) max (j n0(e)-iro(e’),max justify that A’ simulates A. a

where e,e’ E A’. The aEt 
Continuous-time probabilistic automata as

environments e and e’ hav e identica l influences on introduced by Knast L4] are seen to be a special
the system iff d(e ,e’) = 0. The environment set case of the AbE if we consider the time interval
is irreducible iff d is a metric , for an input to a continuous-time PA to be the

Suppose A’ is reducible to a set Ft. That is , environment which attends to that input. Moreover,there is an onto mapping h:A’ -“ St C A’, where if the environment set A’ = [0,”) and the operationh(e) et , then d(e , et) “ 0. The mapping h is addition form a semi-group and the transitionunique only when A’t is i r reducible .  h can be function is a homomorphism for each a ( 1. How -extended to h: A” • (EtA’ by component-wise ever , there is no finite set which generates [0,”)application, by the operation of addition. Knast showed, how-
Corollary Let A (E ,S,G,w0,F,F) be any ADO, then ever , that under certain conditions a continuous-
T(A , e , X) = T(A ,h (e) , A ) for a l l  e ( A’ and A E [0,1). time PA can be approximated by an ADO Ah =

Furth erm ore, if #(h(E)) < , then A can be simu- G, ir O , F ,A’h) ,  where 
~o 

is constant and A’h = {h , 2h , .  .1
lated by a PA. for h > 0. Clearly, Eh 5(h) by the opera tiom~addi tion ~~d for any a € I and e ( A’h, G(a ,e) =
Proof: Since it is clear that p(x,e) • p(x ,h(!)) (G(a ,h)) efn . Hence, the approximation may beVi’TI’ and e ( A’, i t  must be that T(A ,e,A) = simulated by a PA.T(A ,h(e) ,A) Tor any A E [0,1). For #(h(~)) c
by theorem 2 there ex i sts a PA A ’ which simulates 4. Automata in Random Environments
the ADE At = (E ,S,G,s 0, F,Et). Thus, there exists a We shall  now assume that the rea l iza tion ofrelation Rt between E~* and (1 x Et)* satisfying the environment is governed by some probabilisticdefinition 4. Define the relation R between I structure. Hence, the sequence of environment con-and (I x A’)’ by the rule: figurations is a stochastic process. This forwiu-

[x ’, (x,!)] E R iff [x ’,(x,h(e))] ( Rt . lation is useful when we are only able to make
certain probchil is tic assumptions abou t the occur -It is easily verified that R is the relation to rence of any environmen t confi gura tion or when theJustify that A’ simulates A. 0 environment configuration can only be measured by

Suppose we have an ADE A = (t,S,G,s0 , F,A’), where statistical techniques.
F and some binary operation form a semi-group. Let A • (Z,S,G,w0,F,E) be an ADO. Let (12,B,P)
For each a E I, let the mapping G(a ,): A’ + be be a probability space. For each j ( (O ,1, . . . }=J ,
a homorph ism. Clearly, for each a € I G(a) • let z~ be a measurable function from (fl ,B) to
(6Cc,!) Ic ( F) is a semi-group with the operation (A’,B’?, where B’ is a a-field of subsets of A’. The
multi plication . If the semi-group of environments family of random variables Z * {z.Ij ( J) is an
can be generated by a finite set, then A m a y  be environmental stochastic process ~ESP) and
Simulated by a PA. denotes the random variable for the configurk tion

of the environment attending to J.!i~ input syw ol.Theorem 3 Let A = (E,S,G,m0,F,A’) be an AbE such Let us assume that the mappings ir0:E.V~ and G(a ,’):that:
1. A’ • S(F ,.), where F is any finite set and E4Nn Ya(t are measurable; hence, the coapositlons

S(F,.) denotes the semi-group generated by “~ 
• z0 w0(z0) and G(a,.)oz~ G(a,zj) ,3~ l VotE , are

measurable; they are random stocha’iic vectors andF and the opera tion °; random stochastic matrices respectively.
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Definition 5 An automaton in random environments frequency of acceptance of x by A w i t h i n  l I D  
~~~~-

(ARE) is a system (A ,Z), where A is an ABE and 2 vironment sequences is a strong consis tent  un~~.
is an ESP . ased estimator of Ep(x,z). Furthermore, when

there is no additiona l information as to the real.
Define z: Q -. F” by z(w) (z0(w),z1(W),...). izations of the environment processes, the margin .

The mapp ing ’z is ~~measurabie map from (cl,B) to al distribution of the frequency of acceptance of(,E”,B ” ') ,  where B’ is the smallest a-field x based on N repetitions is a binomial random
generated by the measurable cylinders . For xE Z * variable with parameters N and Ep(x,z). Accord.
such tha t L(x)  K we def ine the rand om matrix ingly, we are able to stati sticall y ~ecide whethertransition function K a € ET(A ,z ,X) for al l  A ~ Ep(x ,z).

M(x ,z(~))  Tf G(oi, zj(w ) ) .  Let (~ ,Z) be an ARE , where ~4’ = (E ,S,G,10,p ,g)
1=1 and 2 is a v state homogeneous Markov chain with

Similarly, we have t ( x , z(w), ) = it 0( z0(~ ) ) M ( x , z(w)) in i t ia l  distr ibution a and transit ion matrix Q.
and p(x ,z(w)) = ¶(x,z(w i)n ”. Furthermore, Consider the PA B over I wi th nv states and
T(A ,z ,A) for any A (“[0,1) is a set function of
w E 0 taking values in the set of all subsets 1*.
As can be seen by theorem 1 there is no strict ~G(a ,1)qii . . . G(a,v)q~~l

• generalization in allowing the set of acceptance M(o)
states to be relate4 to the terminal environment. IG (a ,l)q~1 . . . G(a ,v)q~~

• Suppose ~( ‘) , ztl),... are independent iden-
• tically distiibuteã (Jib) sequences of random ( n~ ~

environments. Thus, for any fixed, but arb itrary 
~F

A’ I :
bounded LID random variables. By the strong law I n~ Jx E 1’ , {p(x , z~’~ ) Y ~ is a sequence of uniformly I . .

of large numbers we obtain
N It is left to the reader to verify that Ep(x,!)

lim 1 1 p(x ,z(’)) I p(x ,z) a.s. pB(x) Yx E 1* . Hence , if (A,Z) is an ARE with A
N-.” h =1 as a finite homogeneous Markov chain, then

ET(A ,z ,A) is a PCE for all A [0,1). In other
Definition 6 Let (A,Z) be an ARE and A a real words , if a PA over a singleton alphabet generates
number, A E L0,l) .  The set of tapes ET(A ,z,A) = the random environment sequence, then the expected
(xtx € 1*, A < B p(x,!)} is called the expected set of tapes defined for any cut-point is a PCE .
set of tapes defined by (A ,Z) with cut-point A. This generalizes the result of Turakainen [9] that

Let us define the random variable *(0) = 8 on if the generator is a finite automaton over a
the prob abi l ity  space (Co ,i], B[0,1],u), where sing leton alphabet, then the Set defined for any
B[0 , 1] is the relative Borel field and u is Lebes- cut-point is a PCE.
gue measure . For any fixed, but arb itrary aE E * If the environment random variables wi thin the
and ! E A”', we define the random variable sequence are independent, we find

(1 if i,(e) s p(x,e)
1,o otherwise Ep(x,z) (Eao(zo))ITr EG(oi.zi))n

F

I(x ,e,~.) is measurable and u{8II(x,e,*(O)) 
• 1) — ~i=l

p(x ,e ) .  Thus , I(x ,e,~l~),which has the same relevan
t for any a € 1* and such a result defines an 4DE.

probability structure as an indicator that A within Furthermore, if there are only a finite number
environment sequence ! ~~ in a state in F after of distinct distribution functions corresponding
input a, has expectation E I(x,!,(.) = p(x,e). So to the environmenta l random variables, then the
for an ADO the relative frequency of acceptance ADO can be simulated by a PA A’ . In the parti-
estimates the acceptance probability. cular case when z is a sequence of 110 random

Now consider the composition mapping I(x,z,*) variables, we obtain T(A ’ ,A) = ET(A ,z,A)VAE [0,l) .
defined on the product space [0,1] x 0 , where

(i if ~(6) s p(x,z(u)) S. A Canonical Representation for Automata in
I(a,z(w),*(6)) 

~o otherwise Random Environments

We now obtain I I(x,z,4.) with respect to the pro- In section 4 we encountered the dual nature
duct measure

EI(x ,z,~) = I(x z(w) $(8))d(u*P). 
of the randomness involved in automata in random
environments. The environment sequence is random

LOJ]XQ and for each value the environment sequence as-
By Fubini ’s theorem sumes, the probabilistic state transitions are

E1 (x,z,*) = I(x,z(w),*(B))du(O)dP(w) 
defined. Hence, the state of the system after
an input tape within a random environment sequence

~ [o~i] 
- 

is a function defined on a product probability
space. We shall show that for any ARE (A,Z) there

• J p(x z(w))dP(w) is an ARE (A 0, Y) over the same alphabet whose
transit ior probabil i t ies  are equival ent in the
mean , but the state of (A D,Y) obtained aft er an

= Ep(x,!), input within a random environment sequence is
only related to the value the random environment

where the last expectation is taken with respect sequence obtains. The essence of the machine
to (0,B,P). Supposing {(z(i), *~~‘}T a~e indepen- within A 0 is determinist ic .  To accomplish this
dent copies of (z, ’li) , then {icx ,z(~~,+~~’}’~ we need that the initial distribution function
is a sequence of random variables lID according to and the basic matrix transition take on values
the product measure u P. Thus, the relative which, in addition to being stochastic vectors and
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matrices , respectively, have componen ts tha t are For i = 1 +~~~ (i~ -l) pJ 1 , set a ’ i (e )  = ae(i i , .  .,~ m).
either 0 or 1. Thus , the only randomness in the This uniqueiy describes each element of A’(e) andsystem (A D,Y) is the randomness of the environment A’(e) = ACe). For each °K I , we partition A’(e)sequence. We sha l l  also construct (A 0,Y) to have a in to 

~ 
sublists A’ laK (e) A ’pe~(e), wheref inite environment S~~t~ a’~ (e) E A’ Jo K (e) iff a~(i~ iK l,),iK.l,Let D(M~) deno te the subset of M such that if

N E 0(K0), then m • = 0 or 1. Also , ?et D (V~) be . . . ,i~) E Aja (e) and

the subset of Vn ~I~ch that if V E D(V n), then i = 1 + (J-J)p 1
~~

l + I (i _ l ) ~~r_ l . Actual ly ,ri’I( r
Vj = 0 or 1. A’ JQK (e) = AJO K(e). Thus, we have reordered ACe)
Theorem 4 Let (A ,Z) be an ARE , wh ere A = (I .S.O. and maintained the properties of the partitioning .
~~~F,A’) is an ABE and Z = (z.~ j ( J} is an ESP We now construct the list B’ ( e )  = {B

~0
(e) Idef ined on (0,B ,P) taking va’ues in F. There a€z , i= 1 .. . ~~~~~~ by the rule:exists an ARE (A

D ,Y), where A D = (L ,S,H,p0,F,E’) 1. Set i=l and K=lis an ADE and Y = (y 3 Ii E J} is an ESP defined on 2. a’i(e) must belong to one of the sublistssome (Q’,B’ ,P’) taking values in A” such that A’(A0,Y) satisfie., the ~‘ollowing properties: laK (e) A ’ pa~ (e) , say A ’ JOK . Set
1. H: I 0’ ~D(K0) B’iaK (e) = Bja K

.
2. PQ: 0’ -‘- D(V~) 3. Delete one occurrence of a’.(e) frame the3. I (A”) < list A ’ aK ( e) ,  but let the Lnended l ist4. Ew( x , z) = Ep(x,~) VxEI*, where r(yo,yi,..) retain ~he name A ’ JOK (e).5. ET(A ,z,A) = ET(A ,~ ,A) VA([0,l). 4. Increase the value of i by 1 .

Here we are using s and a to denote the state S. If i ~ p~fl, go to step 2. If not , go to
distributions of (/1,2) and (A D,Y), respectively, step 6.
Recall n = I(S). Notice that knowledge of the 6. If K < m, then set i=l , increase the value
input a and the environment sequence ~(w ’) deter- of K by 1, and go to step 2. If not , stop .
mines the state of A D obtained . This algorithm must necessarily terminate in

Proof: For any a ( I and e ( S we can decompose apifl iterations with the sublists~ empty.

~t~T) into a convex linear combination of p=n
2-n+l We obtain for each e € E. 0m

1. a ’elements of D(Mn). Thus, 1(e)?0. 
y~,,l,... ,P

m , 
~ 

a’1(e)=l

p 2. For each a ( I , A ’(e )  can be partitioned
I a~0(e)8~ 0 (e) = G(a ,e) into p sublists A’ Ce) A’ Ce) such

i=l that ~ a ’ . ( e) = a.  (e) . pa
30for each a E I and e E A’, where B10 (e) € D(Mn), a ’ (e) EA;

u1o(e) ~ 0 and 
3. B’1 (e)ED(M ) ~1j = 1 ~m V0€ 2 and

B. ~e)=Bj0(~) i is an index of an dc-I a10 (e) = 1. So for each e E Ewe have gener- m~~t in A’. Ce).i=l
ated the following arrays of numbers and matrices: Also for any aE l and e E E.

{a

la l
(e) . . . (e) ~B Ce). . .B Ce)) ra ’ (e)B’ ia (e) ) Bj~a’~ (e)1 I lo~ pa1 i 1 ~ j l  a’j(e)EA’ .0(e)

a •(e) . . . a CeJ 1B •(e). . .B
pa (e)J 

= B Ce) ~ a’j(e)la~ pe~ J ~~
l0m

j=l ~° a ’.EA’ . (e)
where m = 1(1) - mfor any i 1 ,. . ., im=l p let 1 30

ae(i l , . . . , im) = 
3~ 1ai~ aj (e) . Now consider 

B (e)a (e)= G(o ,e).
A(e) = (ae (i j im) l i i , . . . . im = 1 ~1L as a 

• 

j=l 
Jo ja

l i s t  of numbers.  A l is t  di f fers  from a set in that Hence for each e K F we have the following
redundancy is preser~~~

’ Now for any e E A’, arrangement:
clearly ae(i l...,im)EO and ~ ... I ae(i1, .. i m) = l .  a ’1(e) B’ (e) . . B

~lam
(e)lo iFor each °K K I , we parthion mA (e) into 

~s&iblists A Ce) A (e), whereb k ~~K a’ (e) B’ (e) ‘ ‘ ‘ B’ 
~ 

Ce)
Aidk

(e) = (aeCi l ~~~~~~~~~~~ ~m ~m01 p 
~~j  - 1

~~~~~~,}
L Since D =D(M )x’..xD( ), the Cartesian

0
W~ obtain the sum of the elements of the list 

product of D(~
’
~
’ witfl itself m times , is a finite

set with ntmm1m distinct elements, we can order it inA Ce) A .. - I I . . .  , I ae(i i . ‘‘~ k-l ’ t ’ a systematic way. Let D be the kth element ofia k ~i ‘K-l 1k+l ‘~~
iK,l~ •~ 

1 )  ~~~~ 
by our ordering. F~r each e € F and K=1 ,.

n define IK
(e) = U I (B’~0 (e),...,810 (e))=Dk}.— Gio (e) A ...t E..E ‘IT a~ ~~e) 

Note that 11(e),...,I Ce) a partiti~n of theK ~i 1V.-l 1k.l ‘ii J~ K .1 nm
set {1,2,,,,,~m), Thi~s,we set

— a1 (e) . 

~ a ’ , i e ~ ~f’ 1k~~~ 
I 0

These are ptm de s nts in the list A (e). We now $~ (e) — J iEI k(e) 1

construct the list A’ (e) • (a ’J(e)I i=l ...,piu} 0 if IK(e) = 0
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maHence , ~ (e)~0 for K=1 n and for all e E A’. As a specia l case we see that a PA can be
Also, fo~ each e K s, viewed as a finite automaton subject to the in-
nm run m fluences of an lID random environment sequence.

((e) = ~ a’.(e) = ~~a’1(e) = I and
I ( 1  K=1 iKI (e) i REFERENCES
nma n’~ 

K

Z 8K (e ) D K = Z ~ a’.(e)(B’ (e),... B’
K=I K=l i€L K

(e) ~ ~0 (~)) 
(1] Gould , J. (1975a) , Automata in environments:

II. stability results, manuscript.

[2) Gould, J. (l97Sb), Automata in environments:

= a’ ( e ) (B’  (e 
III. random environments, manuscript.

- ) B’ . (e))i za1 (3] Gould J and Wegman B.J. (1975) Automata
= (G( a1,e) G(om,e)). 

in en;ironments: I. basic concepts,
manuscript

Now we are ready to define (A D,Y ).  Retain
I, S. and F from (/1,2 ) .  Let 5~ ={1,,,,,0ma}, [4) Knast, R. (1969), Continuous-time probabil-

Def ine H(a ,K) to be the ~th matrix in DK. For istic automata, rnfoxvn. Contr. , 15 ,
333-352.K=l ,...,n,’let p (k) be an n-dimensional row vec-

tor of all zeroe~ except for a 1 in the k
th [s) Paz , A. (1966), Some aspects of probabilis.

component. For n+l~ K5n
nm let p0(K) be any arbi- tic automata, Inform. Contr., 9, 26-60.

trary elemen t of D( y0).(K) [6] Paz, A, (1970), Probabili~ tio Automata,
Define yK(e) (e) for K-i n Academic Press, New York ~ London.So

10 for K= nm (7] Rab in , !4.0. (1963), Probabilistic automata,n+i ~~~ Inform . Contr ’., 6, 230-24S.
where rv~

’
~(e) is the kth componen t of w (e) .  By

Kol mogorov ’s Existence Theorem we defing the [a) Tsetlin , M.L. (1961), On the behavior of

process Y = {y. J j  E .3) by the finite dimensional finite automata in random media,

distributions ~ 
Automat. Remote Control, 22. 1210-1219.

P{y. =X
i i 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ (z )dP , [9) Turakainen, p. (1969), On time-variant

r 1r probabil istic automata wi th monitors,
Ann. Univ. Turku. Ser.A I., 130, 3-11.

where j j € J are all distinct. If same —

j.=0, r~place 
~K 

(z~ ) by ‘tK (z0) .  [iO] Varshavskii, V.1. and Varontsova, 1.P.
1 (1963), On the behavior of stochastic

Let a € 2 ~e a~I input tape of arbitrary automata with a variable structure,
leng th , say a ‘r 1.. ‘T r’ rj € A i 1 ,...,r . Automat. Remote Contro l , 24 , 327-333.
By construction
Ep (x,y)=~~~”7p (K )H(t1,K1

)...H(T ,K )
o r P(y =K ~~~~~~~~~0 0 ’

=~
...I p(K )H(r 1,K1)...H(r ,K )

K Ko r 
J0
TK0

(2o K
1~~

l). .

= J ~~

.. .~~ p (K
0)H(i1,K1

). . .H(t ,K )r rK KO o r ‘
~K0 o~

8K1~~l~
’ . .8~~ (z~,)dP

= J(~~P O KO )Y K (z o) ( ~~8K z j )H(T l, Kl ))

C~ Bx CZrlH(1r~
kr~~

dP 
~
j R FORCE 

~~~~~~ OF SCIENTIPI 0NOTICE OF TRANSMITT~~ TO DDC RESEARCH (AJSQ)= ~ (~ )G(t1,
z
1)...G(t ~ )dP This technjoal re.-~’rt3 0 0  r’ t

O approved for ’ ~utj  r 
b~ o 

andj Di St ribut i  
~~

-. A2~’R i.~ j~j,2 (7b).= fl(x,~)dP = Ei1(x,~) A. D. BLOS~o 1°~~ioa1 ~~~~~~~~~~~~~ Or f1~~~.where all sums are from I to nom.
Clearly,  it follows that ET(.4 ,Z,A)=ET (A011,A)
VA K (0 , 1) 0
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